MIXED CHARACTERISTIC REDUCTION AND BCM-REGULARITY

TATSUKI YAMAGUCHI

BCM-regularity, introduced by Ma-Schwede [MS21], is a mixed characteristic analogue of klt and strong F-regular singularities. They are known to exhibit properties similar to F-regular singularities, but no effective criterion such as Fedder's criterion is known. In this talk, we introduce mixed characteristic reduction, a mixed characteristic analogue of reduction modulo $p \gg 0$ and show BCM-regularity of mixed characteristic reductions for $p \gg 0$ in some case.

Definition 1. Let (R, \mathfrak{m}) be an excellent \mathbb{Q} -Gorenstein normal local domain.

- (1) R is said to be BCM-regular if $R \to B$ is pure for any big Cohen-Macaulay R^+ -algebra B.
- (2) If R/\mathfrak{m} is of characteristic p > 0, then R is said to be *perfectoid BCM-regular* if $R \to B$ is pure for any integral perfectoid big Cohen-Macaulay R^+ -algebra B.

They satisfy following properties.

Proposition 2 ([MS21]). Let R be an excellent \mathbb{Q} -Gorenstein normal local domain.

- (1) If R is BCM-regular, then R has log terminal singularities.
- (2) Suppose that R is of characteristic p > 0. R is F-regular if and only if R is BCM-regular.

The following is expected to hold.

Conjecture 3 (cf. [MS21, Conjecture 3.9]). Suppose that R is essentially of finite type over \mathbb{C} . R is log terminal if and only if R is BCM-regular.

We clarify our setting.

Setting 4. Let $R:=(\mathbb{C}[t,x_2,\ldots,x_n]/(f_1,\ldots,f_m))_{(t,x_2,\ldots,x_n)}$, where $f_1,\ldots,f_m\in(t,x_2,\ldots,x_n)\mathbb{Z}[t,x_2,\ldots,x_n]$, and let $R_p:=(\mathbb{Z}_p[t,x_2,\ldots,x_n]/(t-p,f_1,\ldots,f_m))_{(p,x_2,\ldots,x_n)}$. We say that R_p is a mixed characteristic reduction of R.

Example 5. Let
$$R:=(\mathbb{C}[t,x,y]/(t^2+x^3+y^5))_{(t,x,y)}$$
. Then
$$R_p:=(\mathbb{Z}_p[x,y]/(p^2+x^3+y^5))_{(p,x,y)}$$

is a mixed characteristic reduction.

Theorem 6. With notation as in Setting 4, suppose that R is BCM-regular. Then \widehat{R}_p is perfected BCM-regular for $p \gg 0$.

We can also show the following version.

Theorem 7. With notation as in Setting 4, let S be a regular local ring essentially of finite type over $\mathbb{C}[t]_{(t)}$ such that t-torsion free and the residue field of S equals \mathbb{C} . Suppose that there exists a pure local $\mathbb{C}[t]_{(t)}$ -algebra homomorphism $R \to S$. Then \widehat{R}_p is perfected BCM-regular for almost all p.

Example 8. Let $R := (\mathbb{C}[t, x, y]/(t^2 + x^2 + y^2))_{(t, x, y)}$. $R := \mathbb{Z}_p[x, y]/(p^2 + x^2 + y^2)$ is BCM-regular for $p \gg 0$ by Main Theorem. This fact also follows from [CRMP⁺21], [MST⁺22].

A key ingredient in the proof is the Ax-Kochen-Ershov principle, as in [Sch07].

References

- [CRMP+21] Javier Carvajal-Rojas, Linquan Ma, Thomas Polstra, Karl Schwede, and Kevin Tucker. Covers of rational double points in mixed characteristic. *J. Singul.*, 23:127–150, 2021.
- [MS21] Linquan Ma and Karl Schwede. Singularities in mixed characteristic via perfectoid big Cohen-Macaulay algebras. *Duke Math. J.*, 170(13):2815–2890, 2021. 1
- [MST⁺22] Linquan Ma, Karl Schwede, Kevin Tucker, Joe Waldron, and Jakub Witaszek. An analogue of adjoint ideals and PLT singularities in mixed characteristic. *J. Algebraic Geom.*, 31(3):497–559, 2022. 2
- [Sch07] Hans Schoutens. Asymptotic homological conjectures in mixed characteristic. *Pacific J. Math.*, 230(2):427–467, 2007. 2